Molecular Characterization of the N-Acetylglucosamine Catabolic Genes in Candida africana, a Natural N-Acetylglucosamine Kinase (HXK1) Mutant
نویسندگان
چکیده
BACKGROUND In this study we report the genetic characterization, including expression analysis, of the genes involved in the uptake (NGT1) and catabolism (HXK1/NAG5, DAC1/NAG2, NAG1) of the aminosugar N-acetylglucosamine (GlcNAc) in Candida africana, a pathogenic biovariant of Candida albicans that is naturally unable to assimilate the GlcNAc. RESULTS DNA sequence analysis of these genes revealed a number of characteristic nucleotide substitutions including a unique and distinctive guanine insertion that shifts the reading frame and generates a premature stop codon (TGA) 154 bp downstream of the ATG start codon of the HXK1 gene encoding the GlcNAc-kinase, a key enzyme of the GlcNAc catabolic pathway. However, all examined genes produced transcripts even though different levels of expression were observed among the Candida isolates examined. In particular, we found an HXK1-idependent relationship of the NGT1 gene and a considerable influence of the GlcNAc-kinase functionality on the transcription of the DAC1 and NAG1 genes. Additional phenotypic analysis revealed that C. africana isolates are hyperfilamentous in the first 24-48h of growth on filament-inducing media and revert to the yeast morphological form after 72h of incubation on these media. CONCLUSIONS Our results show that C. africana is a natural HXK1 mutant, displaying a number of phenotypic characteristics distinct from typical C. albicans isolates.
منابع مشابه
N-Acetylglucosamine Kinase, HXK1 Is Involved in Morphogenetic Transition and Metabolic Gene Expression in Candida albicans
Candida albicans, a common fungal pathogen which diverged from the baker's yeast Saccharomyces cerevisiae has the unique ability to utilise N-acetylglucosamine, an amino sugar and exhibits phenotypic differences. It has acquired intricate regulatory mechanisms at different levels in accordance with its life style. N-acetylglucosamine kinase, a component of the N-acetylglucosamine catabolic casc...
متن کاملAttenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway.
A Candida albicans mutant with mutations in the N-acetylglucosamine (GlcNAc) catabolic pathway gene cluster, including the GlcNAc-6-phosphate deacetylase (DAC1), glucosamine-6-phosphate deaminase (NAG1), and GlcNAc kinase (HXK1) genes, was not able to grow on amino sugars, exhibited highly attenuated virulence in a murine systemic candidiasis model, and was less adherent to human buccal epithel...
متن کاملThe inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1.
The catabolic pathway of N-acetylglucosamine (GlcNAc) in Candida albicans is an important facet of its pathogenicity. One of the pathway genes, encoding glucosamine-6-phosphate deaminase (NAG1) is transcriptionally regulated by GlcNAc. Sequence analysis of a 4-kb genomic clone containing NAG1 indicates that this gene is part of a cluster containing two other genes of the GlcNAc catabolic pathwa...
متن کاملWhole Genome-Based Amplified Fragment Length Polymorphism Analysis Reveals Genetic Diversity in Candida africana
This study aimed at investigating the genetic diversity of a panel of Candida africana strains recovered from vaginal samples in different countries. All fungal strains were heterozygous at the mating-type-like locus and belonged to the genotype A of Candida albicans. Moreover, all examined C. africana strains lack N-acetylglucosamine assimilation and sequence analysis of the HXK1 gene showed a...
متن کاملThe Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway
The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016